sábado, 15 de enero de 2011

ondas de espacio ondas de tiempo

SI TODO SALE BIEN, PRONTO CONOCEREMOS
OTRO GRAN DESCUBRIMIENTO DE LA FÍSICA, Y DARÁ INICIO UNA NUEVA ERA EN LA ASTRONOMÍA.
Livingston es un conjunto de casas en medio de una zona boscosa, en la región más pobre del sureste de Estados Unidos. El poblado se encuentra a unos 50 kilómetros de la ciudad de Baton Rouge, capital del estado de Louisiana. En los últimos años, Livingston se ha convertido en un sitio de gran importancia para el estudio de la física fundamental. La razón se encuentra a unos minutos de camino. En medio del bosque se levanta una impresionante estructura de concreto, con un edificio central y dos largos túneles que se extienden cuatro kilómetros en direcciones perpendiculares. Las paredes de uno de los túneles están en parte decoradas por dibujos de niños que vienen en paseos escolares a visitar el lugar, si bien aún queda mucho espacio por dibujar. Dentro de los túneles se encuentran grandes tubos al vacío con espejos en cada extremo, donde la luz de potentes rayos láser rebota continuamente. La estructura es una nueva clase de observatorio astronómico dedicado no a la detección de radiación electromagnética (ondas de radio, rayos infrarrojos, luz visible, rayos ultravioleta, rayos gama y rayos X), sino de un tipo mucho más extraño de señales provenientes del espacio: las ondas gravitacionales.



El observatorio de Livingston es uno de dos observatorios gemelos que forman parte del proyecto LIGO, por Large Interferometric Gravitational-Wave Observatory, gran observatorio interferométrico de ondas gravitacionales. El segundo observatorio se encuentra del otro lado de los Estados Unidos, en Hanford, estado de Washington, al noroeste del país. Hanford es conocido por ser el lugar en el que, en los años 40, como parte del proyecto Manhattan, se construyeron los reactores nucleares que produjeron el plutonio necesario para las primeras bombas atómicas.

El proyecto LIGO forma parte de un esfuerzo mundial que incluye al observatorio VIRGO construido cerca de Pisa, en Italia, al observatorio GEO-600, situado cerca de Hannover, Alemania, y al observatorio TAMA, en Tokio, Japón. En esta red de observatorios se encuentran las esperanzas de cientos de científicos, que tras casi un siglo de expectativas esperan con ansiedad la primera detección de las ondas gravitacionales.

Pero vamos muy rápido. Todavía no hemos dicho qué son las ondas gravitacionales. Para entenderlas debemos echar el reloj hacia atrás y empezar como todo buen cuento: “Había una vez, hace muchos pero muchos años...”

Acción a distanciaNuestro cuento tiene varios héroes, algunos muy antiguos que confundieron mucho las cosas, otros menos antiguos que las arreglaron, y unos muy recientes que las llevaron por caminos nobles y a veces hasta trágicos. El cuento comienza con una simple pregunta: ¿qué es la gravedad? La respuesta simple es que la gravedad es esa fuerza que hace que vivamos pegados al piso, que nos duela mucho cada vez que nos caemos y que tengamos pesadillas cuando nos subimos a un avión. Pero, ¿cómo funciona la fuerza de gravedad y de dónde sale?




Es costumbre trillada en la historia de la física remontarse a los antiguos griegos, y con buena razón. Los antiguos griegos fueron los primeros en intentar entender el mundo de manera racional. En este caso, el antiguo griego en cuestión es nada menos que Aristóteles, quien tenía mucho que decir sobre temas filosóficos, pero a quien además también le daba por la física. Pero la física al estilo de los griegos antiguos, por supuesto: nada de hacer experimentos (se ensucia uno las manos) ni cosas por el estilo. No, la física de sentarse en un buen sillón a pensar en leyes universales que lo expliquen todo de forma lógicamente coherente, con palabras sencillas. Pues bien, Aristóteles explicaba la gravedad como la tendencia de todos los cuerpos a ocupar su “lugar natural”. Los “cuatro elementos” de que se suponía que estaba compuesto todo (tierra, agua, aire y fuego) se acomodaban tan cerca del centro de la Tierra como podían, de acuerdo a su densidad: la tierra hasta abajo, luego el agua, el aire, y hasta arriba el fuego. En la teoría aristotélica de la gravedad las cosas caían más rápido mientras más pesadas fueran (todos hemos visto a una pluma caer mucho más lento que una piedra). Pero el cielo era otra cosa: ahí todo estaba hecho de un material distinto, un quinto elemento, o “quintaesencia”, eterno e inmutable, del que estaban formados el Sol, la Luna, los planetas y las estrellas, y cuyo lugar natural era allá arriba y no abajo.

La explicación de Aristóteles funcionaba bien mientras uno no exigiera mucho detalle, y sobrevivió así muchos siglos. Pero la cosa cambió hacia fines del siglo XVI, cuando la gente empezó a interesarse en cómo apuntar cañones para atinarle a las murallas de la ciudad enemiga y cosas así. Para esto había que hacer números. Fue en esta época cuando apareció el segundo de nuestros héroes. Se llamaba Galileo Galilei y vivía en Pisa. La leyenda dice que a Galileo le daba por medir el tiempo de oscilación de las lámparas de la iglesia con su pulso (en lugar de poner atención a la misa), y también por dejar caer cosas desde la famosa torre inclinada. El hecho es que Galileo pertenecía a una generación en que los científicos ya no tenían miedo de ensuciarse las manos y comenzaban a hacer experimentos para aprender de la naturaleza. Galileo experimentaba dejando caer esferas de distintos pesos por rampas y midiendo el tiempo que les tomaba caer. Haciendo esto logró mostrar que no era cierto que cuanto más pesado es un objeto más rápido cae. Si uno eliminaba la fricción lo más posible, todos los objetos caían al mismo tiempo, aunque no pesaran lo mismo. Una pluma tarda mucho en caer no por ser muy ligera, sino porque la combinación de su forma y su peso la hacen muy susceptible a la fricción del aire. En un tubo donde se ha hecho el vacío una pluma cae igual de rápido que una piedra.

A fines del siglo XVII entra el siguiente héroe de la historia, por quien deben de pasar todos los buenos cuentos de física: Isaac Newton. Este personaje también está rodeado de leyendas. Se dice que a Newton se le ocurrió la ley de la gravitación cuando le cayó una manzana en la cabeza. Newton dio un paso gigantesco al darse cuenta de que la fuerza de gravedad que hace que los objetos (manzanas entre otros) caigan a la Tierra es exactamente la misma que mantiene a la Luna dándole vueltas a la Tierra, y a la Tierra y los demás planetas dándole vueltas al Sol. Es decir, no es cierto eso de que los objetos celestes obedecen leyes físicas diferentes.

Newton desarrolló una fórmula matemática, conocida como ley de la gravitación universal, que permitía explicar no sólo la caída de los objetos en la Tierra (manzanas y balas de cañón por igual), sino también las órbitas de los planetas. Por si fuera poco, la fórmula daba como resultado automático las leyes de Kepler del movimiento de los planetas, que habían sido descubiertas medio siglo antes (por Johannes Kepler, por supuesto) a partir de observaciones muy precisas de la posición de los planetas en el cielo. Por ejemplo, Kepler demostró que los planetas se movían alrededor del Sol en elipses y no en círculos. Pues bien, la ley de la gravitación de Newton implicaba estas elipses en forma natural.

Newton había encontrado una manera de describir el comportamiento de la gravedad considerándola como una fuerza que actúa entre cualesquiera dos objetos con masa. Pero nadie entendía cómo se propagaba la fuerza de un objeto a otro. A Newton le criticaron mucho que su fuerza de gravedad actuara misteriosamente a distancia a través del espacio vacío. Newton tampoco estaba contento con la idea de “acción a distancia”, como él mismo la llamaba, pero reconocía que era la única hipótesis que podía hacerse con los conocimientos de su época.
Maxwell y la velocidad de la luz

La acción a distancia permaneció como un mal necesario en la física hasta el siglo XIX, cuando científicos como Coulomb, Ampère y Faraday se pusieron a estudiar las leyes de la electricidad y el magnetismo, que en principio nada tenían que ver con la gravedad. Hacia mediados del siglo, James C. Maxwell reunió las leyes existentes de la electricidad y el magnetismo en un conjunto de ecuaciones matemáticas hoy conocidas como ecuaciones de Maxwell, en las que la electricidad y el magnetismo resultaban ser manifestaciones distintas de un mismo fenómeno: el electromagnetismo.


Curvatura del espacio. En la teoría de la gravitación compatible con la relatividad, la gravedad deja de ser una fuerza a distancia, y se convierte en una distorsión del espacio y el tiempo (“curvatura”) que altera el movimiento de los objetos inmersos en éste.


Las leyes de Maxwell predecían, entre otras cosas, que el campo electromagnético podía propagarse a través del espacio en forma de ondas. Estas ondas electromagnéticas viajaban a una velocidad universal, que resultaba ser una combinación de constantes físicas bien conocidas. Pues bien, al calcular el valor de esta velocidad Maxwell encontró que era de aproximadamente 300 mil kilómetros por segundo. Para esa época ya se sabía que la luz se propagaba justamente a esa velocidad. Maxwell dio un enorme salto (mental claro está, no sabemos si también brincó de gusto, aunque no era para menos) y postuló que la luz debía ser una onda electromagnética.

Hoy sabemos que Maxwell estaba en lo cierto. Las ondas electromagnéticas vienen en muchas variedades dependiendo de su frecuencia (la frecuencia es el número de veces que una onda oscila en un segundo): desde las ondas de radio y las microondas (las del horno), pasando por la luz infrarroja, la luz visible y los rayos ultravioleta, hasta llegar a los rayos X y los rayos gamma (del consultorio del dentista y las bombas atómicas, respectivamente). La existencia de las ondas electromagnéticas mostraba por primera vez que la acción a distancia podía consistir de un campo de energía que se propagaba por el espacio a cierta velocidad. Quedaba la pregunta de qué era lo que vibraba al propagarse estas ondas, pregunta que dio lugar a muchos debates sobre la existencia de una sustancia llamada “éter” que debía existir en todo el espacio. Pero no entremos a ese tema que nos desviamos, en otra ocasión será.

La teoría electromagnética de Max-well daba lugar a la siguiente pregunta: ¿podía la gravedad ser como el electromagnetismo y consistir en un campo de energía que se propaga a cierta velocidad?

No hay comentarios:

Publicar un comentario